Skip to main content

Genetic Engineering

Genetic engineering of the donor is a powerful asset that will incite the success of the pig-to-human heart xenotransplantation. The transplantation of organs from wild-type (genetically unmodified) pigs into humans resulted in hyper-acute rejection. As a result, genetic engineering of the pig as an organ source is an introduced technique that will improve the survival of the relocated pig heart. 

 

The latest xenotransplantation that was performed at the University of Maryland Center (UMMC) removed three pig genes that trigger attacks from the human immune system (Alpha-Gal, Cmah, and Beta-4-gal) and added six human genes, which included two human complement inhibitor genes (CD46 and DAF), two genes that promote normal blood coagulation (prevents blood vessel damage) (EPCR and Thrombomodulin), and two human immune-modulating genes (CD47 and HO1).

 

In addition, a new drug from Kiniksa Pharmaceuticals in combination with other anti-rejection drugs were used by the surgical team to help suppress the patient’s immune system and for the prevention of HAR. Implementing those genetic modifications and the usage of proper medications will therefore increase the success of the procedure.



 


Citation: 

Kobashigawa, J. (2022). Pig-to-Human Heart Transplantation: Culmination of Technology and Ingenuity. Retrieved from Science Direct: https://pdf.sciencedirectassets.com/271126/1-s2.0-S0003497521X00045/1-s2.0-S0003497522000741/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEPr%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIQCFaf2j2oCDWKxARR8tmlcJSzAKBZQoO%2Fp3m8g%2FStLUAgIgFpAIMjPi

Hansen, J. (2022, January 20). The 10-gene pig and other medical science advances enabled UAB's transplant of a pig kidney into a brain-dead human recipient. UAB News. Retrieved February 26, 2023, from https://www.uab.edu/news/research/item/12567-the-10-gene-pig-and-other-medical-science-advances-enabled-uab-s-transplant-of-a-pig-kidney-into-a-brain-dead-human-recipient 


Comments

Popular posts from this blog

First Successful Pig-to-Human Heart Xenotransplant

The world’s first pig-to-human heart xenotransplant was successfully performed on January 7, 2022, at the University of Maryland School of Medicine (UMSOM) in Baltimore, Maryland. The 8-h procedure was implemented by the cardiac surgery team that was led by Dr. Muhammad Mohiuddin and Dr. Bartley Griffith. It denotes the first time a pig organ has been relocated into a human with a chance to survive and recover. David Bennett, the 57-year-old male patient with terminal heart failure, received a transplanted heart from a genetically modified pig. The heart xenotransplant was the only viable solution for various reasons. Due to his history of disobedience, he was denied five times previously for a traditional heart transplantation. David Bennett was already on cardiac support for almost two months, furthermore he couldn’t acquire a mechanical heart, because of heart arrhythmia. Figure presents the first successful pig-to-human heart xenotransplantation at (UMSOM). Citation:  Rozenbaum...

Zoonotic Diseases

The emergence of new, unrecognized pathogens in the  xenotransplant recipient is one of the primary concerns about the pig-to-human heart xenotransplantation. A major concern is the possibility of zoonotic diseases developing in the xenotransplant recipient and spreading to the public. Both in the United States and around the world, zoonotic diseases are quite widespread. According to scientists, more than 6 out of every 10 recognized infectious diseases in humans are transferred by animals. While the risk of zoonotic diseases from the donor organ may be allowable for the xenotransplant recipient, the risk of a zoonotic agent with unforeseeable pathogenicity from the xenotransplant recipient to the community at large would an inadmissible public health risk. Citation:  Boneva, R. S. (2001, January 14).  Infectious Disease Issues in Xenotransplantation.  Retrieved from National Library of Medicine:  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC88959/ Sawyer,...